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We report two-dimensional phase-field simulations of locally conserved coarsening dynamics of random
fractal clusters with fractal dimensidd=1.7 and 1.5. The correlation function, cluster perimeter, and solute
mass are measured as functions of time. Analyzing the correlation function dynamics, we ifemtfiferent
time-dependent length scales that exhibit power laws in time. The exponents of these power laws do not show
any dependence dn; one of them is apparently the “classical” exponent 1/3. The solute mass versus time
exhibits dynamic scaling with B-dependent exponent, in agreement with a simple scaling theory.
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Many nonequilibrium systems develop morphological in-from DSI and yielded the “classical” value of the dynamic
stabilities and ramified growth at an early stage of the dy-exponent for the globally conserved model, which is 1/2.
namics, exhibit coarsening at an intermediate stage, and fi- The results[11] stand in sharp contrast with simulation
nally approach a simple equilibrium. A classic example is theresults onlocally conserved coarsening of DLA clusters,
diffusion-controlled systems, such as deposition of solutavhere breakdown of DSI was observigl. Breakdown of
from a supersaturated solution and solidification from arDSI is related to the fact that the upper cutbfbf the FCs
overcooled melt. The stage of morphological instability hasremains almost constant in the process of coarsefiing].
been under extensive investigatiph—4]. If some noise is While interpreting this finding, one should distinguish be-
present, fractal clustef&C9 similar to diffusion-limited ag-  tween two regimes: diffusion controlldg<L, and Laplac-
gregategDLA) can develog3]. If the total amount of mass ian | 4>L, wherely~t¥? is the diffusion length. It is clear
or heat is finite, the subsequent dynamics are dominated ipat L should remain almost constant in the diffusion-
surface-tension-driven relaxatidgnoarseniny[5-7]. Coars-  controlled regime, as interaction between the far-lying parts
ening of FCs in systems with conserved order parametenf the cluster is exponentially small in this case. The inequal-
apart from being interesting in its own right, exemplifies aity |,<L was satisfied in the simulations of Ref8,7], and
more general problem ghase orderingemergence of order it is satisfied in the simulations reported in the present work.
from disorder, following a quench from a disordered stateHowever, even in the opposite limit of Laplacian coarsening
into a region of phase coexistenf®,9]. This example is one can expedt to remain almost constaf@nd breakdown
nontrivial because of the long-ranged, power-law correlaof DSI to persis}, this time because of Laplacian screening
tions intrinsic in FCs. The role of the long-ranged correlationof transport. An additional nontrivial aspect ffcally con-
in phase ordering dynamics has been under debate in cogerved coarsening of DLA clusters is the following. Though
nection todynamic scale invariancéDSI), a major simpli-  not dynamically scale invariant, this coarsening process was
fying factor in theory{9]. DSI presumes that there is, at late shown to exhibit dynamic scalin@vith “unusual” exponent
times, asingledynamic length scalg(t) so that the correla- 0.21-0.22 [5-7]. This implies hidden simplicity of a more
tion functionC(r,t) approaches a self-similar forgjr/I(t) ] complex nature than DSI.

[9]. In locally conserved systentmodelB) I(t) is expected We report phase-field simulations of locally conserved
to show dynamic scalin@py which we simply mean a power coarsening of three sets of random FCs. The clusters have
law in time) with “classical” dynamic exponent 1/88-10]. fractal dimensiond=1.7 and 1.5. Our motivation was to

Because of the complexity of the phase-ordering dynameheck whether the “anomalous” scaling persists for clusters
ics, DSI has not been proven, except for a very few simpldaifferent from DLA, and to investigate its possible depen-
models[9]. However, there is extensive evidence, from ex-dence onD. The simulations confirm breakdown of DSI in
periments and simulations, supporting DSI in conserved sysall cases. We identifhreepower laws in time. Two of them
tems with short-rangedcorrelations. Recently, phase-field correspond to dynamic length scales found from the dynam-
simulations of coarsening ofglobally conserved, interface- ics of C(r,t) at small and intermediate distances. The first
controlled system withHong-rangedcorrelations were per- length scale, with an exponent 0.21-0.22, is the same as
formed[11]. DLAs with fractal dimensioD =1.75 served in  observed earlier. Surprisingly, it does not show any depen-
Ref. [11] as the initial conditions for the minority phase. dence orD. The second length scale has an exponent close
Notice that a FC is a particular case of systems with longto 1/3, and we suggest a simple interpretation for its appear-
ranged correlationdD is equal to the exponent that ap- ance. The third dynamic exponent is found in the time de-
pears in the power-law decay of the correlation function apendence of the “solute mass,” and it B dependent. We
t=0: C(r,t=0)~r (@9 whered is the Euclidian dimen- suggest a simple scaling theory for the second and third ex-
sion[4]. The simulationg11] have not found any deviations ponents.
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FIG. 1. Images of locally conserved coarsening of a FC with FIG. 2. Same as in Fig. 1, but fa=1.5.
D=1.7 at timest=0 (upper lef}, 495 (upper righj, 1963 (lower
left), and 4920(lower righy. lated with the spectral scheme. The minority phase area frac-

tions were 10.5%(seriesA), 7.5% (seriesB), and 5.8%

Here is a brief description of our simulation techniques.(seriesC). Notice that the initial cluster area in seriBsvas

We employed a hierarchical algorithf2] to build random  zjmost twice as big as that in seriéswhile D was the same.
FCs with tunable fractal dimension. The algorithm starts gquation (1) with either no flux, or periodic boundary

with a set of 2 square particles grouped into pairs. Thesecondmons obey conservation lawk;= ffu(r t)dr = const
pairs are then grouped into pairs of pairs, and so on, in an

iterative procedure. Aften iterations the final aggregate of and Il—ffru(r t)dr=const. Our numerlcal schemes pre-
2" particles is obtained. The desired fractal dimendibis

achieved by an appropriate mutual position in which the agservelo exactly We checked that they also preselrvevith
gregates are sticked together in each iteraftid]. The clus- @ very high accuracy, better tharka.0 3% up tot=5000
ters obtained in this way are “reinforced,” by an addition of (explicit schemg and better than 0.05% up to=15000
peripheral sites as suggested in R&i, to avoid breakup at (spectral scheme Additional tests of the two schemes in-
an early stage of coarsening. The quality of obtained FCs iluded obtaining the stationary kink solution of K@) and
controlled by computing the correlation functieee below  observing the “classic” scaling with exponent 1/3 for the

and checking the quality of the power law. initial condition in the form of “white noise.”
A standard phase-field model for locally conserved coars- The cluster was identified as the locus B{r,t)=1,
ening is the Cahn-Hilliard equatidi,9], whereB(r,t)=1 foru(r,t)=0 and zero otherwise. Figures 1

and 2 show snapshots of the coarsening dynamics observed
in seriesA andC. One can see that the larger features grow
at the expense of the smaller ones. The global structure of the
clusters remains unchanged. In particular, the cluster size is
This equation was discretized and solved numerically. Twalmost constant, in a marked contrast to the globally con-
different numerical schemes were employed to advance theerved casg11]. A significant decrease df in time is a
solution in time. The first scheme used an explicit Euler in-necessary prerequisite afy fractal coarsening that obeys
tegration. The simulated domal? was a two-dimensional DSl [6,11,14,15, therefore its absence clearly implies that
box 1024x 1024 with no-flux boundary conditiorigero nor-  DSI is broken. One can also notice a more pronounced
mal component oV u at the boundarigsThe grid size was breakup of the cluster fdd =1.5. Still, even in this case the
Ax=Ay=1, the time stepA\t=1/25 ensured numerical sta- large-scale mass distribution in the cluster does not change
bility. The time range of these simulations was:0<5000.  much.

The second scheme used a semi-implicit Fourier spectral To characterize the coarsening dynamics, several quanti-
method[13]. The simulation box was 17921792, with pe- ties were sampled and averaged over the initial conditions in
riodic boundary conditions. The grid size wAs=Ay=1, each of the three simulation series.

which corresponds to 1792 Fourier modes in each dimen- (1) (Circularly averagedequal-time correlation function,
sion. The time step wadt=0.3, the total time range was normalized ar =0,

0<t<15000. Overall, three series of simulations were per-

Ju
'3 Vz(V2u+u u®)=0. )

formed. In two of them, with the explicit scheme, ten FCs Clrt) = (p(r'+r,t)p(r',1))
with D= 1.7 (seriesA) and ten FCs witlD = 1.5 (seriesC) ' (p2(r' 1))
served as the initial conditions for the minority phasel.

In addition, seven FCs witlb =1.7 (seriesB) were simu- (2) Cluster perimeteP(t) [16].
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FIG. 3. Equal-time pair correlation function at different times =" 10
for simulation seried. t=0 (solid line), t=658.8 (dotted ling, t ?a 9
= 2787 (dashed-dotted lineandt =15 000(dashed ling The inset 8

shows a log-log plot of the same function. The dynamic length scale 10 100 1000 1 100 1000
I,(t) (the kneelike featupeis apparent. ! !

(3) Cluster mass ()= [f p(r,t)dr. FIG. 5. Same as in Fig. 4, but f&=1.5.

B(r,t)=1
(4) “Solute” mass outside the cluster, M(t) broken, in the Laplacian regime as well.
= [[ p(r,t)dr. Figures 4 and 5 show the measured quantitied ,, P,
B(r.)=0 andMg, averaged over the initial conditions, versus time for

Here an auxiliary “density” fieldp(r,t)=(1/2)[u(r,t)  simulation serie® andC, respectively. We fitted these time
+1] is introduced that varies between O and 1. Als9, dependencies by power laws with exponesis 3, «,, and

= const implies thaM(t) + M(t) = const. , , ¥, respectively. According to the Porod |d8], one expects
Figure 3 showsC(r,t) at different times for simulation , — _,_~AJl simulation results are summarized in Table I.

seriesB (D=1.7). Coarsening occurs at small and interme-, " anq 4. are close to the previously reported val(igs 7).
o oneyia 3 ol most U We see o eidence o any dependence of e xponents
zen” taillthat shrinks in time. On the typical scales of D. This result is surprising. One can expedDaJIe_pendence

: imply becauser;=1/3 whenD =2 and the DSI is restored

coarsening, the cluster is not fractal anymore. This implie 9,10l Not h anificant i ¢ |
the breakdown of DSI ab <2. The same type of behavior 7'~ otice, however, significant corrections 1o scaling
that is, curvature on the log-log p)an I,(t) andP(t). This

of C(r,t) was obtained for the locally conserved coarsenin
of D(I_A )clusters [6,7]. At small dista%ces(:(r,t) behaves effect(also observed for DLA clustef$—7]) can mask pos-
linearly with r, C(r,t)=1—r/l(t), as expected from the Sible weakD dependence ot in the range of 1.5D
Porod law[9]. This asymptotics yields dynamic length scale <1.7. The exponeng is close to the classical exponent 1/3.
1,(t). One can also see a kneelike feature at intermediatéhe appearance_of the classical gxponent in a situation with
distances, which develops in the course of time. This featur@oken DSI requires an explanati¢see below. The solute
yields dynamic length scalg. We defind , as the maximum Mass exhibits dynamic scaling withCadependent exponent
value ofr for which the relative difference betwed(r,0) Y- . .

andC(r t) is not greater than 3%the results are insensitive _ NOW we report a simple scaling theory for the exponents
to the exact value of this thresholdNotice that, by the end B @nd . It is based on the fact that, at subdiffusive dis-
of the simulation time, the diffusion length, is already tancesr_<|d(t),the Cahn-Hilliard d.ynam|cs are reducible to
greater than 1D Still, we do not see any signature kfin 2 sharp-interface model of Laplacian coarseniad7]. The

the shape o€(r 1) at large distances. We expect that the tailProcess of Laplacian coarsening can be described as follows.
of C(r,t) will remain “frozen” until late times, and DSI Small branches of the cluster shrink and disappear, and their

material is reabsorbed by larger branches. Because of the

ol 100 ) 3 Laplacian screening, reabsorption occurs locélherefore,
50
_-20 e TABLE |. Dynamic exponents found in the simulations. Also
shown isvy,,, theoretical prediction fory.
% (1000 10000 %% 1000 10000 Series A B Cc
D 1.7 1.7 15
75
50 Q aq 0.21+0.02 0.22+0.01 0.2x0.01
a ay —0.21+0.01 -0.21+0.01 -0.21+0.01
5 ® B 0.32+0.01 0.32:0.01 0.36:0.01
y —0.16+0.005 —0.16£0.005 —0.09x2x10"*
et 000 10000 100 ;1000 10000 Yth —-0.18 —-0.18 -0.09

FIG. 4.1, (a), |, (b), P (c), andMq (d) vs time forD=1.7. The  ®The errors are estimated by shifting the time intervals of fitting.
solid lines are power-law fits. The errors in each fit are much smaller.

050501-3



RAPID COMMUNICATIONS

AZ| LIPSHTAT, BARUCH MEERSON, AND PAVEL V. SASORQOV PHYSICAL REVIEW BB5 050501R)

the mass distribution on large scales remains unchangedTherefore, a more careful investigation is needed in order to
The reabsorption events cause undulations of the interfacefistinguish between these two effects.

of the branches. Assuming DSI on length scalgd)<r In summary, the simulations support earlier resifiison
<l4(t), we see that, by timg the characteristic undulation breakdown of DSI in locally conserved coarsening of sys-
length is of ordet. This gives a natural explanation to the t€ms with long-ranged correlations and reveal new signatures
dynamic length scalé,~t13 observed in the simulations. Of hidden simplicity in these systems. We confirm the value
The Gibbs-Thomson condition at the interf46e17] implies ~ ©f the anomalous dynamic exponen=0.21-0.22. At

a solute density of order 3 in the “contaminated” region present we are unaware of any reliable prgdlctlon for the
within a distancd, from the cluster. Taking into account the déPéndence ofx; on D, except the constraini, (D =2)
(preservedl fractal structure of the cluster at distances that— 1/3- However, in view of our results, this dependefiée
are large compared 1q, we estimate the contaminated area2n Should be quite weak in the 1.5-1.7 range. Two addi-
asAq~13(L/14)P=t~ P2 Multiplying the “solute density” ~ ional dynamic exponentg=1/3 andy=y(D) are identi-
t~13 by A, yields the solute masl (t)oct4~32)6 The last fled. They can pe |n.terpreted in terms of'LapIac'lan coarsen-
row in Table | shows the theoretical exponep,= (4 ing at subdiffusive distances<|4(t), combined with DSI at

—3D)/6. A good agreement with simulations is seen. Notice'mermed"’:lte distancag(t) <r <lq(t).

that v;, changes sign aD=4/3. At D<4/3 reabsorption The work was supported by the Israel Science Foundation
should effectively stop, and the cluster should continue disand by the Russian Foundation for Basic Resedftant
solving. We performed a single simulation with a random FCNo. 99-01-00128 We thank Professor M. Conti for provid-
with D=1.3, which indeed showed a very slow but persis-ing the explicit Cahn-Hilliard solver and correlation function
tent increase oM ¢ with time. Notice, however, that FC with diagnostics, and Nadav Katz for helping us with the realiza-
a smallerD also implies, in our simulations, a smaller areation of the algorithm[12]. We also thank Professor G. I.
fraction of the minority phase. At too small area fractions theBarenblatt, Orly Lipshtat, and Avner Peleg for instructive
minority phase can dissolve completely, independentlp.of discussions.
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