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Anomalous dynamic scaling in locally conserved coarsening of fractal clusters
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We report two-dimensional phase-field simulations of locally conserved coarsening dynamics of random
fractal clusters with fractal dimensionD51.7 and 1.5. The correlation function, cluster perimeter, and solute
mass are measured as functions of time. Analyzing the correlation function dynamics, we identifytwo different
time-dependent length scales that exhibit power laws in time. The exponents of these power laws do not show
any dependence onD; one of them is apparently the ‘‘classical’’ exponent 1/3. The solute mass versus time
exhibits dynamic scaling with aD-dependent exponent, in agreement with a simple scaling theory.
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Many nonequilibrium systems develop morphological
stabilities and ramified growth at an early stage of the
namics, exhibit coarsening at an intermediate stage, an
nally approach a simple equilibrium. A classic example is
diffusion-controlled systems, such as deposition of sol
from a supersaturated solution and solidification from
overcooled melt. The stage of morphological instability h
been under extensive investigation@1–4#. If some noise is
present, fractal clusters~FCs! similar to diffusion-limited ag-
gregates~DLA ! can develop@3#. If the total amount of mass
or heat is finite, the subsequent dynamics are dominate
surface-tension-driven relaxation~coarsening! @5–7#. Coars-
ening of FCs in systems with conserved order parame
apart from being interesting in its own right, exemplifies
more general problem ofphase ordering: emergence of orde
from disorder, following a quench from a disordered st
into a region of phase coexistence@8,9#. This example is
nontrivial because of the long-ranged, power-law corre
tions intrinsic in FCs. The role of the long-ranged correlati
in phase ordering dynamics has been under debate in
nection todynamic scale invariance~DSI!, a major simpli-
fying factor in theory@9#. DSI presumes that there is, at la
times, asingledynamic length scalel (t) so that the correla-
tion functionC(r ,t) approaches a self-similar formg@r / l (t)#
@9#. In locally conserved systems~modelB) l (t) is expected
to show dynamic scaling~by which we simply mean a powe
law in time! with ‘‘classical’’ dynamic exponent 1/3@8–10#.

Because of the complexity of the phase-ordering dyna
ics, DSI has not been proven, except for a very few sim
models@9#. However, there is extensive evidence, from e
periments and simulations, supporting DSI in conserved s
tems with short-rangedcorrelations. Recently, phase-fie
simulations of coarsening of aglobally conserved, interface
controlled system withlong-rangedcorrelations were per
formed@11#. DLAs with fractal dimensionD51.75 served in
Ref. @11# as the initial conditions for the minority phas
Notice that a FC is a particular case of systems with lo
ranged correlations.D is equal to the exponents that ap-
pears in the power-law decay of the correlation function
t50: C(r ,t50);r 2(d2s), whered is the Euclidian dimen-
sion @4#. The simulations@11# have not found any deviation
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-
-
fi-
e
e
n
s

by

r,

e

-

n-

-
e
-
s-

-

t

from DSI and yielded the ‘‘classical’’ value of the dynam
exponent for the globally conserved model, which is 1/2.

The results@11# stand in sharp contrast with simulatio
results on locally conserved coarsening of DLA cluster
where breakdown of DSI was observed@6#. Breakdown of
DSI is related to the fact that the upper cutoffL of the FCs
remains almost constant in the process of coarsening@5–7#.
While interpreting this finding, one should distinguish b
tween two regimes: diffusion controlledl d,L, and Laplac-
ian l d.L, where l d;t1/2 is the diffusion length. It is clear
that L should remain almost constant in the diffusio
controlled regime, as interaction between the far-lying pa
of the cluster is exponentially small in this case. The inequ
ity l d,L was satisfied in the simulations of Refs.@6,7#, and
it is satisfied in the simulations reported in the present wo
However, even in the opposite limit of Laplacian coarsen
one can expectL to remain almost constant~and breakdown
of DSI to persist!, this time because of Laplacian screeni
of transport. An additional nontrivial aspect oflocally con-
served coarsening of DLA clusters is the following. Thou
not dynamically scale invariant, this coarsening process
shown to exhibit dynamic scaling~with ‘‘unusual’’ exponent
0.21–0.22! @5–7#. This implies hidden simplicity of a more
complex nature than DSI.

We report phase-field simulations of locally conserv
coarsening of three sets of random FCs. The clusters h
fractal dimensionsD51.7 and 1.5. Our motivation was t
check whether the ‘‘anomalous’’ scaling persists for clust
different from DLA, and to investigate its possible depe
dence onD. The simulations confirm breakdown of DSI i
all cases. We identifythreepower laws in time. Two of them
correspond to dynamic length scales found from the dyna
ics of C(r ,t) at small and intermediate distances. The fi
length scale, with an exponent 0.21–0.22, is the same
observed earlier. Surprisingly, it does not show any dep
dence onD. The second length scale has an exponent cl
to 1/3, and we suggest a simple interpretation for its app
ance. The third dynamic exponent is found in the time d
pendence of the ‘‘solute mass,’’ and it isD dependent. We
suggest a simple scaling theory for the second and third
ponents.
©2002 The American Physical Society01-1
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Here is a brief description of our simulation technique
We employed a hierarchical algorithm@12# to build random
FCs with tunable fractal dimension. The algorithm sta
with a set of 2n square particles grouped into pairs. The
pairs are then grouped into pairs of pairs, and so on, in
iterative procedure. Aftern iterations the final aggregate o
2n particles is obtained. The desired fractal dimensionD is
achieved by an appropriate mutual position in which the
gregates are sticked together in each iteration@12#. The clus-
ters obtained in this way are ‘‘reinforced,’’ by an addition
peripheral sites as suggested in Ref.@5#, to avoid breakup at
an early stage of coarsening. The quality of obtained FC
controlled by computing the correlation function~see below!
and checking the quality of the power law.

A standard phase-field model for locally conserved coa
ening is the Cahn-Hilliard equation@8,9#,

]u

]t
1

1

2
¹2~¹2u1u2u3!50. ~1!

This equation was discretized and solved numerically. T
different numerical schemes were employed to advance
solution in time. The first scheme used an explicit Euler
tegration. The simulated domainV was a two-dimensiona
box 102431024 with no-flux boundary conditions~zero nor-
mal component of¹u at the boundaries!. The grid size was
Dx5Dy51, the time stepDt51/25 ensured numerical sta
bility. The time range of these simulations was 0,t,5000.
The second scheme used a semi-implicit Fourier spec
method@13#. The simulation box was 179231792, with pe-
riodic boundary conditions. The grid size wasDx5Dy51,
which corresponds to 1792 Fourier modes in each dim
sion. The time step wasDt50.3, the total time range wa
0,t,15 000. Overall, three series of simulations were p
formed. In two of them, with the explicit scheme, ten FC
with D51.7 ~seriesA) and ten FCs withD51.5 ~seriesC)
served as the initial conditions for the minority phaseu51.
In addition, seven FCs withD51.7 ~seriesB) were simu-

FIG. 1. Images of locally conserved coarsening of a FC w
D51.7 at timest50 ~upper left!, 495 ~upper right!, 1963 ~lower
left!, and 4920~lower right!.
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lated with the spectral scheme. The minority phase area f
tions were 10.5%~seriesA), 7.5% ~seriesB), and 5.8%
~seriesC). Notice that the initial cluster area in seriesB was
almost twice as big as that in seriesA, while D was the same.

Equation ~1! with either no flux, or periodic boundary
conditions obey conservation laws:I 05**

V
u(r ,t)dr 5const

and I15**
V

ru(r ,t)dr 5const. Our numerical schemes pr

serveI 0 exactly. We checked that they also preserveI1 with
a very high accuracy, better than 531023% up to t55000
~explicit scheme!, and better than 0.05% up tot515 000
~spectral scheme!. Additional tests of the two schemes in
cluded obtaining the stationary kink solution of Eq.~1! and
observing the ‘‘classic’’ scaling with exponent 1/3 for th
initial condition in the form of ‘‘white noise.’’

The cluster was identified as the locus ofB(r ,t)51,
whereB(r ,t)51 for u(r ,t)>0 and zero otherwise. Figures
and 2 show snapshots of the coarsening dynamics obse
in seriesA andC. One can see that the larger features gr
at the expense of the smaller ones. The global structure o
clusters remains unchanged. In particular, the cluster siz
almost constant, in a marked contrast to the globally c
served case@11#. A significant decrease ofL in time is a
necessary prerequisite ofany fractal coarsening that obey
DSI @6,11,14,15#, therefore its absence clearly implies th
DSI is broken. One can also notice a more pronoun
breakup of the cluster forD51.5. Still, even in this case the
large-scale mass distribution in the cluster does not cha
much.

To characterize the coarsening dynamics, several qua
ties were sampled and averaged over the initial condition
each of the three simulation series.

~1! ~Circularly averaged! equal-time correlation function
normalized atr 50,

C~r ,t !5
^r~r 81r ,t !r~r 8,t !&

^r2~r 8,t !&
.

~2! Cluster perimeterP(t) @16#.

FIG. 2. Same as in Fig. 1, but forD51.5.
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~3! Cluster massM (t)5 **
B(r ,t)51

r(r ,t)dr .

~4! ‘‘Solute’’ mass outside the cluster, Ms(t)
5 **

B(r ,t)50
r(r ,t)dr .

Here an auxiliary ‘‘density’’ fieldr(r ,t)5(1/2)@u(r ,t)
11# is introduced that varies between 0 and 1. Also,I 0
5const implies thatM (t)1Ms(t)5const.

Figure 3 showsC(r ,t) at different times for simulation
seriesB (D51.7). Coarsening occurs at small and interm
diate distances, while the large-r tail remains almost un-
changed. The fractal behavior is observed only in the ‘‘f
zen’’ tail that shrinks in time. On the typical scales
coarsening, the cluster is not fractal anymore. This imp
the breakdown of DSI atD,2. The same type of behavio
of C(r ,t) was obtained for the locally conserved coarsen
of DLA clusters @6,7#. At small distances,C(r ,t) behaves
linearly with r, C(r ,t).12r / l 1(t), as expected from the
Porod law@9#. This asymptotics yields dynamic length sca
l 1(t). One can also see a kneelike feature at intermed
distances, which develops in the course of time. This fea
yields dynamic length scalel 2. We definel 2 as the maximum
value of r for which the relative difference betweenC(r ,0)
andC(r ,t) is not greater than 3%~the results are insensitiv
to the exact value of this threshold!. Notice that, by the end
of the simulation time, the diffusion lengthl d is already
greater than 102. Still, we do not see any signature ofl d in
the shape ofC(r ,t) at large distances. We expect that the t
of C(r ,t) will remain ‘‘frozen’’ until late times, and DSI

FIG. 3. Equal-time pair correlation function at different tim
for simulation seriesB. t50 ~solid line!, t5658.8 ~dotted line!, t
52787 ~dashed-dotted line! and t515 000~dashed line!. The inset
shows a log-log plot of the same function. The dynamic length sc
l 2(t) ~the kneelike feature! is apparent.

FIG. 4. l 1 ~a!, l 2 ~b!, P ~c!, andMs ~d! vs time forD51.7. The
solid lines are power-law fits.
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broken, in the Laplacian regime as well.
Figures 4 and 5 show the measured quantitiesl 1 , l 2 , P,

andMs , averaged over the initial conditions, versus time
simulation seriesB andC, respectively. We fitted these tim
dependencies by power laws with exponentsa1 , b, a2 , and
g, respectively. According to the Porod law@9#, one expects
a152a2. All simulation results are summarized in Table
a1 anda2 are close to the previously reported values@5–7#.
We see no evidence of any dependence of these exponen
D. This result is surprising. One can expect aD dependence
simply becausea151/3 whenD52 and the DSI is restored
@9,10#. Notice, however, significant corrections to scalin
~that is, curvature on the log-log plot! in l 1(t) andP(t). This
effect ~also observed for DLA clusters@5–7#! can mask pos-
sible weakD dependence ofa1 in the range of 1.5,D
,1.7. The exponentb is close to the classical exponent 1/
The appearance of the classical exponent in a situation
broken DSI requires an explanation~see below!. The solute
mass exhibits dynamic scaling with aD-dependent exponen
g.

Now we report a simple scaling theory for the expone
b and g. It is based on the fact that, at subdiffusive d
tances,r , l d(t), the Cahn-Hilliard dynamics are reducible
a sharp-interface model of Laplacian coarsening@9,17#. The
process of Laplacian coarsening can be described as follo
Small branches of the cluster shrink and disappear, and t
material is reabsorbed by larger branches. Because of
Laplacian screening, reabsorption occurs locally~therefore,

le

FIG. 5. Same as in Fig. 4, but forD51.5.

TABLE I. Dynamic exponents found in the simulations. Als
shown isg th , theoretical prediction forg.

Series A B C
D 1.7 1.7 1.5

a1 0.2160.01a 0.2260.01 0.2160.01
a2 20.2160.01 20.2160.01 20.2160.01
b 0.3260.01 0.3260.01 0.3060.01
g 20.1660.005 20.1660.005 20.096231024

g th 20.18 20.18 20.09

aThe errors are estimated by shifting the time intervals of fittin
The errors in each fit are much smaller.
1-3
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the mass distribution on large scales remains unchang!.
The reabsorption events cause undulations of the interf
of the branches. Assuming DSI on length scalesl 1(t),r
, l d(t), we see that, by timet, the characteristic undulatio
length is of ordert1/3. This gives a natural explanation to th
dynamic length scalel 2;t1/3 observed in the simulations
The Gibbs-Thomson condition at the interface@9,17# implies
a solute density of ordert21/3 in the ‘‘contaminated’’ region
within a distancel d from the cluster. Taking into account th
~preserved! fractal structure of the cluster at distances th
are large compared tol d , we estimate the contaminated ar
asAd; l d

2(L/ l d)D}t (22D)/2. Multiplying the ‘‘solute density’’
t21/3 by Ad yields the solute massMs(t)}t (423D)/6. The last
row in Table I shows the theoretical exponentg th5(4
23D)/6. A good agreement with simulations is seen. Not
that g th changes sign atD54/3. At D,4/3 reabsorption
should effectively stop, and the cluster should continue d
solving. We performed a single simulation with a random
with D51.3, which indeed showed a very slow but pers
tent increase ofMs with time. Notice, however, that FC with
a smallerD also implies, in our simulations, a smaller ar
fraction of the minority phase. At too small area fractions t
minority phase can dissolve completely, independently ofD.
or

v.

.
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Therefore, a more careful investigation is needed in orde
distinguish between these two effects.

In summary, the simulations support earlier results@6# on
breakdown of DSI in locally conserved coarsening of s
tems with long-ranged correlations and reveal new signatu
of hidden simplicity in these systems. We confirm the va
of the anomalous dynamic exponenta1.0.21–0.22. At
present we are unaware of any reliable prediction for
dependence ofa1 on D, except the constrainta1(D52)
51/3. However, in view of our results, this dependence~if
any! should be quite weak in the 1.5–1.7 range. Two ad
tional dynamic exponentsb.1/3 andg5g(D) are identi-
fied. They can be interpreted in terms of Laplacian coars
ing at subdiffusive distancesr , l d(t), combined with DSI at
intermediate distancesl 1(t),r , l d(t).
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